Abstract

We present a design, process How, and packaging scheme for a novel three-dimensional capacitive microelectromechanical systems pressure sensor [1], [10]. These sensors present a paradigm shift in pressure sensor technology. They contain an array of vertical diaphragms perpendicular to the wafer plane where each pair of diaphragms requires orders of magnitude lower footprint than traditional in-plane sensors. The sensor can be arrayed or scaled up for increased sensitivity and can be absolute, gauge or differential. Fabrication requires 2-4 masks, depending on process How and has been greatly simplified, without reduction in performance, for high yield and low cost. Multiple geometries have been modeled with sensitivities reaching several fF/kPa and temperature coefficient of sensitivity better than conventional devices. Pressure and electrical ports are individually interchangeable between front and back sides. This allows for a simple design that has only Si facing the sensing environment and the electrical connections on the backside, thus enabling simple packaging for both pressure and electrical ports.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call