Abstract
Cloud Radio Access Network (C-RAN) is a promising architecture for unprecedented capacity enhancement in next-generation wireless networks thanks to the centralization and virtualization of base station processing. However, centralized signal processing in C-RANs involves high computational complexity that quickly becomes unaffordable when the network grows to a huge size. Among the first, this paper endeavours to design a scalable uplink signal detection algorithm, in the sense that both the complexity per unit network area and the total computation time remain constant when the network size grows. To this end, we formulate the signal detection in C-RAN as an inference problem over a bipartite random geometric graph. By passing messages among neighboring nodes, message passing (a.k.a. belief propagation) provides an efficient way to solve the inference problem over a sparse graph. However, the traditional message-passing algorithm is not guaranteed to converge, because the corresponding bipartite random geometric graph is locally dense and contains many short loops. As a major contribution of this paper, we propose a randomized Gaussian message passing (RGMP) algorithm to improve the convergence. Instead of exchanging messages simultaneously or in a fixed order, we propose to exchange messages asynchronously in a random order. The proposed RGMP algorithm demonstrates significantly better convergence performance than conventional message passing. The randomness of the message update schedule also simplifies the analysis, and allows the derivation of the convergence conditions for the RGMP algorithm. In addition, we propose a blockwise RGMP (B-RGMP) algorithm for practical implementation. The average computation time of B-RGMP remains constant when the network size increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.