Abstract

Titanium carbide MXene flakes have promising applications in aerospace, flexible electronic devices and biomedicine owing to their superior mechanical properties1 and electrical conductivity2 and good photothermal conversion3, biocompatibility4 and osteoinductivity5. It is highly desired yet very challenging to assemble MXene flakes into macroscopic high-performance materials in a scalable manner. Here we demonstrate a scalable strategy to fabricate high-performance MXene films by roll-to-roll-assisted blade coating (RBC) integrated with sequential bridging, providing good photothermal conversion and osteogenesis efficiency under near-infrared irradiation. MXene flakes were first bridged with silk sericin by hydrogen bonding and then assembled into macroscopic films using a continuous RBC process, followed by ionic bridging to freeze their aligned structure. The resultant large-scale MXene films with strong interlayer interactions are highly aligned and densified, exhibiting high tensile strength (755 MPa), toughness (17.4 MJ m-3) and electromagnetic interference (EMI) shielding capacity (78,000 dB cm2 g-1), as well as good ambient stability, photothermal conversion and bone regeneration performance. The proposed strategy not only paves a feasible way for realizing the practical applications of MXene in the fields of flexible EMI shielding materials and bone tissue engineering but also provides an avenue for the high-performance and scalable assembly of other two-dimensional flakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.