Abstract
We demonstrate a scalable ultra-wideband (UWB) pulse generator using silicon photonic integrated circuits. A delay-and-superimpose principle for higher order UWB Guassian pulse generation is realized by monolithically integrating a pair of tunable microring resonators, a delayline waveguide, tap couplers, and an on-chip photodiode. The two microrings function as discrimination filters and generate the asymmetric monocycle pulses. For a proof-of-concept demonstration, the doublet pulses with a 10-dB fractional bandwidth of 100% and the triplet pulses with a 10-dB fractional bandwidth of 132% are generated by superposition of the two asymmetric pulses with a proper delay between them. The proposed scheme and the photonic chip can be scaled to generate more kinds of power-efficient pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.