Abstract

Energy models of existing buildings are unreliable unless calibrated so that they correlate well with actual energy usage. Manual tuning requires a skilled professional and is prohibitively expensive for small projects, imperfect, non-repeatable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and sensors are making available. A scalable, automated methodology is needed to quickly, intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The “Autotune” project is a novel, model-agnostic methodology that leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided that quantify model error to measured data for either monthly or hourly electrical usage from a highly instrumented, emulated-occupancy research home.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.