Abstract

Mobile cloud computing has been introduced to improve the performance of mobile application clients by offloading data processing and storage to cloud. By deploying the service on several cloud-enabled data centers, the service provider can optimally locate service instances on the cloud to provide qualified services at a reasonable cost. However, a centralized approach for both request allocation and response routing does not scale efficiently due to a large number of mobile clients involved in the mobile service traffic management. Moreover, the random and unpredictable wireless network performance (e.g., delay) complicates the problem further. In this paper, we present a stochastic distributed optimization framework for mobile cloud traffic management in 5G networks. The framework takes the impact of random wireless network characteristics into account. Utilizing the alternating direction method of multipliers, the optimization problem is decomposed into independent subproblems, which are solved in a parallel fashion on distributed agents and coordinated through dual variables. The convergence issue under the stochastic setting is addressed, and the numerical tests validate the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call