Abstract

2D nanomaterials with atomic thickness usually exhibit high specific surface areas and atom exposure rates, which are suitable for surface reaction related applications. In this study, we selected the oxalate ions as the structure-inducing agent to synthesize δ-MnO2 ultrathin nanosheets (~4.5 nm) via a facile hydrothermal method. Subsequently, an efficient exfoliation method to prepare single-layer MnO2 nanosheets (~0.9 nm) with the major exposed {0 0 1} facets was successfully developed. We found that the oxalate ions play a major role in the growth and formation of δ-MnO2 ultrathin nanosheets, and the formation process of the ultrathin structure was also investigated. The resulting single-layer MnO2 nanosheets (monosheets) with exposed {0 0 1} facets showed much higher catalytic performance for carcinogenic airborne formaldehyde, better than few-layer ultrathin nanosheets and nanoflowers with exposed {1 0 0} facets. The reasons for the high catalytic activity of MnO2 monosheets can be attributed to its higher surface areas and oxygen vacancy concentration. Moreover, the density-functional-theory (DFT) theoretical calculations showed that the oxygen vacancy in single-layer {0 0 1} facets exhibited the strongest adsorption/activation ability to O2 and H2O, which was very favorable for catalytic oxidation of formaldehyde. The synthesis strategy of ultrathin nanosheets described in this article may serve as reference and guidance for the preparation of other 2D ultrathin nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.