Abstract

Hydrogen bonding phase-transfer catalysis offers a convenient solution to activate safe and economical metal alkali fluorides for enantioselective nucleophilic fluorination. Herein, we demonstrate the scalability of this protocol with the fluorination of 200 g of racemic trans-N,N-dibenzyl-2-bromocyclohexan-1-amine in a mechanically stirred 1 L glass reactor using 0.5 mol % of a bis-urea organocatalyst. In these experiments, full conversions were obtained for high mixing intensities (impeller average shear rate >10 000 s–1; maximum energy dissipation per unit of mass >300 W/kg). The thermal safety of the reaction was assessed by differential scanning calorimetry and reaction calorimetry, assigning the reaction to Stoessel’s critical class 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.