Abstract

Aqueous Zn-air batteries are emerging to be ideal next-generation energy-storage devices with high safety and high energy/power densities. However, the rational design and fabrication of low-cost, highly efficient, and durable electrocatalysts on the cathode side remain highly desired. Herein, template-assisted, scalable Fe-implanted N-doped porous carbon nanotube networks (Fe-N-CNNs) have been synthesized based on an environmentally friendly template hydroxyapatite nanowires (HAP NWs). Thanks to the hierarchical meso/micropores, high specific surface area, and abundant active sites, the optimized Fe-N-CNNs exhibit excellent oxygen reduction activity. Furthermore, the Zn-air batteries based on the Fe-N-CNNs cathode deliver a high discharge voltage of 1.27 V at a current density of 20 mA cm-2 and a large peak power density of 202.2 mW cm-2 . More far-reaching, this HAP-based template strategy opens a new avenue toward the mass production of efficient, cost-effective electrocatalysts, and the Fe-N-CNNs with hollow interiors are expected to extend their other potential uses in energy storage, molecular sieves, adsorbents, and biomedical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.