Abstract

In this work, we develop for the first time a facile chemical lithiation-assisted exfoliation approach to the controllable and scalable preparation of bilayer graphene. Biphenyl lithium (Bp-Li), a strong reducing reagent, is selected to realize the spontaneous Li-intercalation into graphite at ambient temperature, forming lithium graphite intercalation compounds (Li-GICs). The potential of Bp-Li (0.11 V vs Li/Li+), which is just lower than the potential of stage-2 lithium intercalation (0.125 V), enables the precise lithiation of graphite to stage-2 Li-GICs (LiC12). Intriguingly, the exfoliation of LiC12 leads to the bilayer-favored production of graphene, giving a high selectivity of 78%. Furthermore, the mild intercalation-exfoliation procedure yields high-quality graphene with negligible structural deterioration. The obtained graphene exhibits ultralow defect density (ID/IG ∼ 0.14) and a considerably high C/O ratio (∼29.7), superior to most current state-of-the-art techniques. This simple and scalable strategy promotes the understanding of chemical Li-intercalation methods for preparing high-quality graphene and shows great potential for layer-controlled engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.