Abstract

Hydrogen-substituted graphdiyne (HsGDY), as a new rising star of carbon materials family, demonstrates high conjugation, robust chemical stability, and versatility for modification. However, grand challenges, including low production rate, disordered topology, and amorphous structure, greatly hinder its large-scale applications. Herein, we report, for the first time, the scalable synthesis (up to gram-level) of two-dimensional (2D) crystalline HsGDY nanosheets with Zn as a substrate. Moreover, as a metal-free catalyst for electrochemical N2 fixation, 2D HsGDY achieves an ultrahigh yield of 103 μg h−1 mg−1cat. with a potential of −0.2 V vs reversible hydrogen electrode (RHE), which is comparable with that of noble metals and single-atom catalysts. Different from the heteroatom active sites in carbon-based catalysts reported before, the inner alkynyl C itself in 2D HsGDY was identified as the active site, which adsorbs and activates NN due to the positive charge and high spin density triggered by the slight O doping in the form of CO at the outer alkynyl C. We believe that this Zn-templated scalable production of high-quality HsGDY paves the way for its large-scale production and provides a new playground for the multiple research fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call