Abstract

Standard literature procedures for the chemical synthesis of l-threose nucleosides generally employ l-ascorbic acid as starting material. Herein, we have explored two alternative routes that start from either l-arabitol or l-diethyl tartrate, both affording 2-O-methyl-l-threofuranose as a key building block for nucleobase incorporation. The access to multigram quantities of this glycosyl donor in a reproducible fashion allows for the preparation of 2'-deoxy-α-l-threofuranosyl phosphonate nucleosides on a large scale. This methodology was applied to the gram scale synthesis of an aryloxy amidate prodrug of phosphonomethoxydeoxythreosyl adenine. This prodrug exerted potent activity against an entecavir-resistant hepatitis B virus (HBV) strain, while leading to a significant reduction in the levels of HBV covalently closed circular DNA in a cellular assay. Furthermore, its remarkable anti-HBV efficacy was also confirmed in vivo using a hydrodynamic injection-based HBV mouse model, without relevant toxicity and systemic exposure occurring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.