Abstract

In this study, the authors report the highly efficient, multigram-scale synthesis of an ester-functionalized, poly(aniline-co-fluorene) polymer. The excellent solubility and film-forming ability of this polymer facilitate its application as a reversible battery cathode. Electrochemical quartz crystal microbalance with dissipation monitoring confirms a multi-electron transfer process, resulting in a specific discharge capacity of 51 mAh g-1 and a high reversible doping level of 0.69. Galvanostatic cycling at 1 C demonstrates excellent electrode stability with a capacity retention of 95.2% after 100 cycles. Therefore, this work demonstrates a novel electroactive polymer that exemplifies how chemical functionality may be used to properly balance processability and electroactivity of macromolecular battery cathodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.