Abstract
Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen–lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.