Abstract

Advances in the generation of the shortest optical laser pulses down to the sub-cycle regime promise to break new ground in ultrafast science. In this work, we theoretically demonstrate the potential scaling capabilities of soliton self-compression in hollow capillary fibers with a decreasing pressure gradient to generate near-infrared sub-cycle pulses in very different dispersion and nonlinearity landscapes. Independently of input pulse, gas and fiber choices, we present a simple and general route to find the optimal self-compression parameters which result in high-quality pulses. The use of a decreasing pressure gradient naturally favors the self-compression process, resulting in shorter and cleaner sub-cycle pulses, and an improvement in the robustness of the setup when compared to the traditional constant pressure approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call