Abstract

JavaScript Object Notation (JSON) and its variants have gained great popularity in recent years. Unfortunately, the performance of their analytics is often dragged down by the expensive JSON parsing. To address this, recent work has shown that building bitwise indices on JSON data, called structural indices , can greatly accelerate querying. Despite its promise, the existing structural index construction does not scale well as records become larger and more complex, due to its (inherently) sequential construction process and the involvement of costly memory copies that grow as the nesting level increases. To address the above issues, this work introduces Pison - a more memory-efficient structural index constructor with supports of intra-record parallelism. First, Pison features a redesign of the bottleneck step in the existing solution. The new design is not only simpler but more memory-efficient. More importantly, Pison is able to build structural indices for a single bulky record in parallel, enabled by a group of customized parallelization techniques. Finally, Pison is also optimized for better data locality, which is especially critical in the scenario of bulky record processing. Our evaluation using real-world JSON datasets shows that Pison achieves 9.8X speedup (on average) over the existing structural index construction solution for bulky records and 4.6X speedup (on average) of end-to-end performance (indexing plus querying) over a state-of-the-art SIMD-based JSON parser on a 16-core machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.