Abstract
The recent advent of quantum computing has the potential to overhaul security, communications, and scientific modeling. Superconducting qubits are a leading platform that is advancing noise-tolerant intermediate-scale quantum processors. The implementation requires scaling to large numbers of superconducting qubits, circuit depths, and gate speeds, wherein high-purity RF signal generation and effective cabling transport are desirable. Fiber photonic-enhanced RF signal generation has demonstrated the principle of addressing both signal generation and transport requirements, supporting intermediate qubit numbers and robust packaging efforts; however, fiber-based approaches to RF signal distribution are often bounded by their phase instability. Here, we present a silicon photonic integrated circuit-based version of a photonic-enhanced RF signal generator that demonstrates the requisite stability, as well as a path towards the necessary signal fidelity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.