Abstract

The advent of near-term digital quantum computers could offer us an exciting opportunity to investigate quantum many-body phenomena beyond that of classical computing. To make the best use of the hardware available, it is paramount that we have methods that accurately simulate Hamiltonian dynamics for limited circuit depths. In this paper, we propose a method to classically optimize unitary brickwall circuits to approximate quantum time evolution operators. Our method is scalable in system size through the use of tensor networks. We demonstrate that, for various three-body Hamiltonians, our approach produces quantum circuits that can outperform trotterization in both their accuracy and the quantum circuit depth needed to implement the dynamics, with the exact details being dependent on the Hamiltonian. We also explain how to choose an optimal time step that minimizes the combined errors of the quantum device and the brickwall circuit approximation. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call