Abstract

Classical microprocessors operate on irreversible gates, that, when combined with AND, half-adder and full-adder operations, execute complex tasks such as multiplication of integers. We introduce parity versions of all components of a multiplication circuit. The parity gates are reversible quantum gates based on the recently introduced parity transformation and build on ground-space encoding of the corresponding gate logic. Using a quantum optimization heuristic, e.g., an adiabatic quantum computing protocol, allows one to quantum mechanically reverse the process of multiplication and thus factor integers, which has applications in cryptography. Our parity approach builds on nearest-neighbor constraints equipped with local fields, able to encode the logic of a binary multiplication circuit in a modular and scalable way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.