Abstract

Constant power loads (CPLs) impose instability issues in DC microgrids due to their negative impedance characteristics. This paper studies the problem of voltage control design of DC microgrids with CPLs. It is assumed that the power of CPLs is uncertain and belongs to a given interval leading to an infinite number of equilibrium points of the system. We develop a polytope model for DC microgrids with uncertain CPLs. Using this model, a robust two-degree-of-freedom feedback-feedforward voltage control framework is then proposed. The voltage controller is obtained by a solution of a set of linear matrix inequalities. The voltage control design strategy for each distributed generation (DG) unit is scalable and independent of the other DGs. The effectiveness of the proposed control approach is evaluated through simulation studies in MATLAB/SimPowerSystems toolbox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.