Abstract

In many businesses, firms are selling different types of products, which share mutual substitution effects in demand. To compute effective pricing strategies is challenging as the sales probabilities of each of a firm’s products can also be affected by the prices of potential substitutes. In this paper, we analyze stochastic dynamic multi-product pricing models for the sale of perishable goods. To circumvent the limitations of time-consuming optimal solutions for highly complex models, we propose different relaxation techniques, which allow to reduce the size of critical model components, such as the state space, the action space, or the set of potential sales events. Our heuristics are able to decrease the size of those components by forming corresponding clusters and using subsets of representative elements. Using numerical examples, we verify that our heuristics make it possible to dramatically reduce the computation time while still obtaining close-to-optimal expected profits. Further, we show that our heuristics are (i) flexible, (ii) scalable, and (iii) can be arbitrarily combined in a mutually supportive way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.