Abstract

To form a coherent quantum transport in hybrid superconductor-semiconductor (S-Sm) junctions, the formation of a homogeneous and barrier-free interface between two different materials is necessary. The S-Sm junction with high interface transparency will then facilitate the observation of the induced hard superconducting gap, which is the key requirement to access the topological phases (TPs) and observation of exotic quasiparticles such as Majorana zero modes (MZM) in hybrid systems. A material platform that can support observation of TPs and allows the realization of complex and branched geometries is therefore highly demanding in quantum processing and computing science and technology. Here, we introduce a two-dimensional material system and study the proximity induced superconductivity in semiconducting two-dimensional electron gas (2DEG) that is the basis of a hybrid quantum integrated circuit (QIC). The 2DEG is a 30 nm thick In0.75Ga0.25As quantum well that is buried between two In0.75Al0.25As barriers in a heterostructure. Niobium (Nb) films are used as the superconducting electrodes to form Nb- In0.75Ga0.25As -Nb Josephson junctions (JJs) that are symmetric, planar and ballistic. Two different approaches were used to form the JJs and QICs. The long junctions were fabricated photolithographically, but e-beam lithography was used for short junctions' fabrication. The coherent quantum transport measurements as a function of temperature in the presence/absence of magnetic field B are discussed. In both device fabrication approaches, the proximity induced superconducting properties were observed in the In0.75Ga0.25As 2DEG. It was found that e-beam lithographically patterned JJs of shorter lengths result in observation of induced superconducting gap at much higher temperature ranges. The results that are reproducible and clean suggesting that the hybrid 2D JJs and QICs based on In0.75Ga0.25As quantum wells could be a promising material platform to realize the real complex and scalable electronic and photonic quantum circuitry and devices.

Highlights

  • A Josephson junction (JJ) is formed by sandwiching a thin layer of a non-superconducting material between two superconductors[1]

  • We demonstrate a quantum integrated circuit (QIC) on a chip which consists of array of ballistic 2D JJs that can be controlled by 20 wires

  • On-chip QICs comprising an array of JJs based on superconducting indium gallium arsenide (In0.75Ga0.25As) quantum wells were demonstrated

Read more

Summary

Introduction

A Josephson junction (JJ) is formed by sandwiching a thin layer of a non-superconducting (normal) material between two superconductors[1]. The JJs with semiconductor as their non-superconducting (normal) part, or superconductor-semiconductor-superconductor (S-Sm-S) JJs, have received much attention in recent years after the purported detection of exotic Majorana particles with zero electrical charges at the interface of a superconductor and a semiconducting one-dimensional (1D) nanowire[17,18,19,20,21,22]. The fine tuning of nanowire’s chemical potential, for accessing topological phases, requires JJs with several electrostatically gates which causes quite a lot of issues in complex device fabrication out of nanowires. To overcome the scalability issues of 1D wires, two-dimensional (2D) material platforms are highly desirable[19,22]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call