Abstract

Atomic ensembles, comprising clouds of atoms addressed by laser fields, provide an attractive system for both the storage of quantum information and the coherent conversion of quantum information between atomic and optical degrees of freedom. We describe a scheme for full-scale quantum computing with atomic ensembles, in which qubits are encoded in symmetric collective excitations of many atoms. We consider the most important sources of error—imperfect exciton–photon coupling and photon losses—and demonstrate that the scheme is extremely robust against these processes: the required photon emission and collection efficiency threshold is ≳86%. Our scheme uses similar methods to those already demonstrated experimentally in the context of quantum repeater schemes and yet has information processing capabilities far beyond those proposals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.