Abstract

Electrocatalytic reduction reaction of CO2 (CO2RR) is an effective way to mitigate energy and environmental issues. However, very limited catalysts are capable of converting CO2 resources into high-value products such as hydrocarbons or alcohols. Herein, we first propose a facile strategy for the large-scale synthesis of isolated Cu decorated through-hole carbon nanofibers (CuSAs/TCNFs). This CuSAs/TCNFs membrane has excellent mechanical properties and can be directly used as cathode for CO2RR, which could generate nearly pure methanol with 44% Faradaic efficiency in liquid phase. The self-supporting and through-hole structure of CuSAs/TCNFs greatly reduces the embedded metal atoms and produces abundant efficient Cu single atoms, which could actually participate in CO2RR, eventually causing -93 mA cm-2 partial current density for C1 products and more than 50 h stability in aqueous solution. According to DFT calculations, Cu single atoms possess a relatively higher binding energy for *CO intermediate. Therefore, *CO could be further reduced to products like methanol, instead of being easily released from the catalyst surface as CO product. This report may benefit the design of efficient and high-yield single-atom catalysts for other electrocatalytic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call