Abstract

In this manuscript, we develop printable graphene ink through a solvent-exchange method. Printable graphene ink in ethanol and water free of any surfactant is dependent on matching the surface tension of the cross-solvent with the graphene surface energy. Percolative transport behavior is observed for films made of this printable ink. Optical conductivity is then calculated based on sheet resistance, optical transmittance, and thickness. Upon analyzing the ratio of dc/optical conductivity versus flake size/layer number, we report that our dc/optical conductivity is among the highest of films based on direct deposited graphene ink. This is the first demonstration of scalable, printable, surfactant-free graphene ink derived directly from graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.