Abstract
Today smart meters are widely used in the energy sector to record energy consumption in real time. Large amounts of smart meter data have been accumulated and used for diverse analysis purposes. Anomaly detection raises the big data problem, namely the detection of abnormal events or unusual consumption behaviors. However, there is a lack of appropriate online systems that can handle anomaly detection for large-scale smart meter data effectively and efficiently. This paper proposes a lambda system for detecting anomalous consumption patterns, aiming at assisting decision makings for smart energy management. The proposed system uses a prediction-based detection method, combined with a novel lambda architecture for iterative model updates and real-time anomaly detection. This paper evaluates the system using a real-world data set and a large synthetic data set, and compares with three baselines. The results show that the proposed system has good scalability, and has a competitive advantage over others in anomaly detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.