Abstract

Nanoporous silica membranes exhibit excellent H2/CO2 separation properties for sustainable H2 production and CO2 capture but are prepared via complicated thermal processes above 400 °C, which prevent their scalable production at a low cost. Here, we demonstrate the rapid fabrication (within 2 min) of ultrathin silica-like membranes (∼3 nm) via an oxygen plasma treatment of polydimethylsiloxane-based thin-film composite membranes at 20 °C. The resulting organosilica membranes unexpectedly exhibit H2 permeance of 280-930 GPU (1 GPU = 3.347 × 10-10 mol m-2 s-1 Pa-1) and H2/CO2 selectivity of 93-32 at 200 °C, far surpassing state-of-the-art membranes and Robeson's upper bound for H2/CO2 separation. When challenged with a 3 d simulated syngas test containing water vapor at 200 °C and a 340 d stability test, the membrane shows durable separation performance and excellent hydrothermal stability. The robust H2/CO2 separation properties coupled with excellent scalability demonstrate the great potential of these organosilica membranes for economic H2 production with minimal carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.