Abstract

Nanoporous silica membranes exhibit excellent H2/CO2 separation properties for sustainable H2 production and CO2 capture but are prepared via complicated thermal processes above 400 °C, which prevent their scalable production at a low cost. Here, we demonstrate the rapid fabrication (within 2 min) of ultrathin silica-like membranes (∼3 nm) via an oxygen plasma treatment of polydimethylsiloxane-based thin-film composite membranes at 20 °C. The resulting organosilica membranes unexpectedly exhibit H2 permeance of 280-930 GPU (1 GPU = 3.347 × 10-10 mol m-2 s-1 Pa-1) and H2/CO2 selectivity of 93-32 at 200 °C, far surpassing state-of-the-art membranes and Robeson's upper bound for H2/CO2 separation. When challenged with a 3 d simulated syngas test containing water vapor at 200 °C and a 340 d stability test, the membrane shows durable separation performance and excellent hydrothermal stability. The robust H2/CO2 separation properties coupled with excellent scalability demonstrate the great potential of these organosilica membranes for economic H2 production with minimal carbon emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call