Abstract

Large-scale, parallel clusters composed of commodity processors are increasingly available, enabling the use of vast processing capabilities and distributed RAM to solve hard search problems. We investigate parallel algorithms for optimal sequential planning, with an emphasis on exploiting distributed memory computing clusters. In particular, we focus on an approach which distributes and schedules work among processors based on a hash function of the search state. We use this approach to parallelize the A* algorithm in the optimal sequential version of the Fast Downward planner. The scaling behavior of the algorithm is evaluated experimentally on clusters using up to 128 processors, a significant increase compared to previous work in parallelizing planners. We show that this approach scales well, allowing us to effectively utilize the large amount of distributed memory to optimally solve problems which require hundreds of gigabytes of RAM to solve. We also show that this approach scales well for a single, shared-memory multicore machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.