Abstract

In this article, we consider the problem of allocating human operators in a system with multiple semiautonomous robots. Each robot is required to perform an independent sequence of tasks, subject to a chance of failing and getting stuck in a fault state at every task. If and when required, a human operator can assist or teleoperate a robot. Conventional dynamic programming-based techniques used to solve such problems face scalability issues due to an exponential growth of state and action spaces with the number of robots and operators. In this article, we derive conditions under which the operator allocation problem satisfies a technical condition called indexability, thereby enabling the use of the Whittle index heuristic. The conditions are easy to check, and we show that they hold for a wide range of problems of interest. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in remote robot supervision systems. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal and scalable approach that outperforms existing scalable methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.