Abstract

Scalable novel beta phase polyvinylidene fluoride-poly(methyl methacrylate) (PVDF-PMMA) polymer blend based nanocomposite foam with hydroxyapatite (HAp) and titanium dioxide (TiO2) as nanofillers (β-PVDF-PMMA/HAp/TiO2) (β-PPHT-f), was prepared by using salt etching assisted solution casting method. The prepared β-PPHT-f nanocomposite material was characterized using XRD, FT-IR, SEM-EDS. The XRD and FTIR results confirmed the formation of β phase of β-PPHT-f. The SEM and EDS results confirmed the formation of high porous structured closed cell type morphology of β-PPHT-f. It also, confirmed the uniform distribution of Ti, Ca, P, N and O, in β-PPHT-f. Contact angle measurements performed using sessile drop method with water and EDTA treated blood (EDTA blood) as probe liquids revealed that β-PPHT-f is hydrophilic with contact angle of 48.2° as well as hemophilic with contact angle of 13.7°. Porosity, fluid absorption and retention investigation by gravimetric analysis revealed that β-PPHT-f was 89.2% porous and can absorb and retain 139.15% and 87.05% of water and blood, respectively. The hemolysis assay performed as per ASTM F756 procedure revealed that β-PPHT-f is non hemolytic. Also, the Leishman stained blood smears prepared from whole blood incubated with β-PPHT-f for 3, 4, 5 and 6 h at 37 °C revealed that the blood cells were not affected by β-PPHT-f, its surface morphology and elemental composition. H9c2 cell line studies on a transparent film prepared using β-PPHT-f revealed that the elemental composition of the nanocomposite favored H9c2 cell adhesion and differentiation. All the characterization results indicate that the newly developed scalable novel β-PPHT-f is hemocompatible and cardiomyocyte compatible, suggesting it as a useful material for direct blood contact and cardiac patch applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.