Abstract

In this paper, we investigate data parallelism in exact inference with respect to arbitrary junction trees. Exact inference is a key problem in exploring probabilistic graphical models, where the computation complexity increases dramatically with clique width and the number of states of random variables. We study potential table representation and scalable algorithms for node-level primitives. Based on such node-level primitives, we propose computation kernels for evidence collection and evidence distribution. A data parallel algorithm for exact inference is presented using the proposed computation kernels. We analyze the scalability of node-level primitives, computation kernels, and the exact inference algorithm using the coarse-grained multicomputer (CGM) model. According to the analysis, we achieve O(Nd <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> w <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> Pi <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j=1</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wc</sup> r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C,j</sub> /P) local computation time and O(N) global communication rounds using P processors, 1 les P les max <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> PiPi <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j1</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wc</sup> r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C,j,</sub> where N is the number of cliques in the junction tree; d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> is the clique degree; r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C,j</sub> is the number of states of the jth random variable in C; wc is the clique width; and w <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> is the separator width. We implemented the proposed algorithm on state-of-the-art clusters. Experimental results show that the proposed algorithm exhibits almost linear scalability over a wide range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.