Abstract
With the advent of high-throughput sequencing, an efficient computing strategy is required to deal with large genomic data sets. The challenge of estimating a large precision matrix has garnered substantial research attention for its direct application to discriminant analyses and graphical models. Most existing methods either use a lasso-type penalty that may lead to biased estimators or are computationally intensive, which prevents their applications to very large graphs. We propose using an L 0 penalty to estimate an ultra-large precision matrix (scalnetL0). We apply scalnetL0 to RNA-seq data from breast cancer patients represented in The Cancer Genome Atlas and find improved accuracy of classifications for survival times. The estimated precision matrix provides information about a large-scale co-expression network in breast cancer. Simulation studies demonstrate that scalnetL0 provides more accurate and efficient estimators, yielding shorter CPU time and less Frobenius loss on sparse learning for large-scale precision matrix estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.