Abstract
This paper presents a multiresolution image segmentation method based on the discrete wavelet transform and Markov random field (MRF) modeling. A major contribution of this work is to add spatial scalability to the segmentation algorithm producing the same segmentation pattern at different resolutions. This property makes it applicable for scalable object-based wavelet coding. The correlation between different resolutions of pyramid is considered by a multire solution analysis which is incorporated into the objective function of the MRF segmentation algorithm. Examining the corresponding pixels at different resolutions simultaneously enables the algorithm to directly segment the images in the YUV or similar color spaces where luminance is in full resolution and chrominance components are at half resolution. Allowing for smoothness terms in the objective function at different resolutions improves border smoothness and creates visually more pleasing objects/regions, particularly at lower resolutions where downsampling distortions are more visible. In addition to spatial scalability, the proposed algorithm outperforms the standard single and multire solution segmentation algorithms, in both objective and subjective tests
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.