Abstract
The data-driven management of real-life systems based on a trained model, which in turn is based on the data gathered from its daily usage, has attracted a lot of attention because it realizes scalable control for large-scale and complex systems. To obtain a model within an acceptable computational cost that is restricted by practical constraints, the learning algorithm may need to identify essential data that carries important knowledge on the relation between the observed features representing the measurement value and labels encoding the multiple target concepts. This results in an increased computational burden owing to the concurrent learning of multiple labels. A straightforward approach to address this issue is feature selection; however, it may be insufficient to satisfy the practical constraints because the computational cost for feature selection can be impractical when the number of labels is large. In this study, we propose an efficient multilabel feature selection method to achieve scalable multilabel learning when the number of labels is large. The empirical experiments on several multilabel datasets show that the multilabel learning process can be boosted without deteriorating the discriminating power of the multilabel classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.