Abstract

Emerging byte-addressable, non-volatile memory (NVM) is fundamentally changing the design principle of transaction logging. It potentially invalidates the need for flush-before-commit as log records are persistent immediately upon write. Distributed logging---a once prohibitive technique for single node systems in the DRAM era---becomes a promising solution to easing the logging bottleneck because of the non-volatility and high performance of NVM. In this paper, we advocate NVM and distributed logging on multicore and multi-socket hardware. We identify the challenges brought by distributed logging and discuss solutions. To protect committed work in NVM-based systems, we propose passive group commit , a lightweight, practical approach that leverages existing hardware and group commit. We expect that durable processor cache is the ultimate solution to protecting committed work and building reliable, scalable NVM-based systems in general. We evaluate distributed logging with logging-intensive workloads and show that distributed logging can achieve as much as ~3x speedup over centralized logging in a modern DBMS and that passive group commit only induces minuscule overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.