Abstract
Visual feature learning, which aims to construct an effective feature representation for visual data, has a wide range of applications in computer vision. It is often posed as a problem of nonnegative matrix factorization (NMF), which constructs a linear representation for the data. Although NMF is typically parallelized for efficiency, traditional parallelization methods suffer from either an expensive computation or a high runtime memory usage. To alleviate this problem, we propose a parallel NMF method called alternating least square block decomposition (ALSD), which efficiently solves a set of conditionally independent optimization subproblems based on a highly parallelized fine-grained grid-based blockwise matrix decomposition. By assigning each block optimization subproblem to an individual computing node, ALSD can be effectively implemented in a MapReduce-based Hadoop framework. In order to cope with dynamically varying visual data, we further present an incremental version of ALSD, which is able to incrementally update the NMF solution with a low computational cost. Experimental results demonstrate the efficiency and scalability of the proposed methods as well as their applications to image clustering and image retrieval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.