Abstract

The transportation sector needs to significantly lower greenhouse gas emissions. European manufacturers in particular must develop new vehicles and powertrains to comply with recent regulations and avoid fines for exceeding C O 2 emissions. To answer the question regarding which powertrain concept provides the best option to lower the environmental impacts, it is necessary to evaluate all vehicle life-cycle phases. Different system boundaries and scopes of the current state of science complicate a holistic impact assessment. This paper presents a scaleable life-cycle inventory (LCI) for heavy-duty trucks and powertrains components. We combine primary and secondary data to compile a component-based inventory and apply it to internal combustion engine (ICE), hybrid and battery electric vehicles (BEV). The vehicles are configured with regard to their powertrain topology and the components are scaled according to weight models. The resulting material compositions are modeled with LCA software to obtain global warming potential and primary energy demand. Especially for BEV, decisions in product development strongly influence the vehicle’s environmental impact. Our results show that the lithium-ion battery must be considered the most critical component for electrified powertrain concepts. Furthermore, the results highlight the importance of considering the vehicle production phase.

Highlights

  • The Paris Climate Agreement requires drastic reductions of carbon dioxide emissions for industry and private sectors [1]

  • This paper presents a scaleable life-cycle inventory (LCI) for heavy-duty trucks and powertrains components

  • The resulting material compositions are modeled with LCA software to obtain global warming potential and primary energy demand

Read more

Summary

Introduction

The Paris Climate Agreement requires drastic reductions of carbon dioxide emissions for industry and private sectors [1]. The transportation sector is responsible for 27% of European greenhouse gas emissions (GHG), of which road transportation accounts for 71.7%. Emissions from road transportation keep increasing, due to increasing transportation demand [2]. The German Ministry of Transport predicts an increase in road transportation of 30% by the year 2030 [3]. It is evident that heavy-duty trucks will remain an integral part of transportation in the future. Due to their high share (50%) of (fossil) energy consumption, vehicles with gross weights of more than 15 tons each have substantial leverage over lower anthropogenic GHG [7]. The European Union tightened limits for CO2 emissions for passenger cars in 2018 and expanded these limits to include light and heavy-duty vehicles in 2019 [8,9]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call