Abstract
We report a simple and scalable synthetic method where we use cotton as a template material to grow LiCoO2 nanoparticles along one dimensional micro-fibers with minimized agglomeration. The final three dimensional porous electrode structure and smaller dimensions of nanoparticles result in efficient ionic accessibility as well as decreased ionic/electronic diffusion lengths during battery cycling. Due to this structural advantage, the nanoparticle fiber structure exhibits substantially improved power performance compared to that of the commercial micron-size counterpart. Even at a fast 2 min discharging rate, a capacity of 90 mAh/g is preserved. Excellent cycling performance is also achieved by maintaining the original electrode structure. The synthetic procedures introduced herein are simple and scalable and thus must be readily applicable to the large-scale syntheses of other lithium battery active materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.