Abstract

K-Nearest Neighbor Graph (K-NNG) construction is a primitive operation in the field of Information Retrieval and Recommender Systems. However, existing approaches to K-NNG construction do not perform well as the number of nodes or dimensions scales up. In this paper, we present greedy filtering, an effcient and scalable algorithm for selecting the candidates for nearest neighbors by matching only the dimensions of large values. The experimental results show that our K-NNG construction scheme, based on greedy filtering, guarantees a high recall while also being 5 to 6 times faster than state-of-the-art algorithms for large, high-dimensional data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.