Abstract

Nanofluidic devices have great potential for applications in areas ranging from renewable energy to human health. A crucial requirement for the successful operation of nanofluidic devices is the ability to interface them in a scalable manner with the outside world. Here, we demonstrate a hybrid two photon nanolithography approach interfaced with conventional mask whole-wafer UV-photolithography to generate master wafers for the fabrication of integrated micro and nanofluidic devices. Using this approach we demonstrate the fabrication of molds from SU-8 photoresist with nanofluidic features down to 230 nm lateral width and channel heights from micron to sub-100 nm. Scanning electron microscopy and atomic force microscopy were used to characterize the printing capabilities of the system and show the integration of nanofluidic channels into an existing microfluidic chip design. The functionality of the devices was demonstrated through super-resolution microscopy, allowing the observation of features below the diffraction limit of light produced using our approach. Single molecule localization of diffusing dye molecules verified the successful imprint of nanochannels and the spatial confinement of molecules to 200 nm across the nanochannel molded from the master wafer. This approach integrates readily with current microfluidic fabrication methods and allows the combination of microfluidic devices with locally two-photon-written nano-sized functionalities, enabling rapid nanofluidic device fabrication and enhancement of existing microfluidic device architectures with nanofluidic features.

Highlights

  • Micro and nanofabrication give new possibilities to analyze molecular processes with high precision

  • To explore the integration of nanofluidics with microfluidics we focus on a prototypical nano/micro device, consisting of two microfluidic channels that are connected via nanochannel junctions

  • We showed that the two-photon lithography setup presented here is capable of producing features down to 230 nm lateral width on a silicon wafer surface in SU-8 photoresist and successfully integrated 420 nm wide nanochannels into a microfluidic master design

Read more

Summary

Introduction

Micro and nanofabrication give new possibilities to analyze molecular processes with high precision. To produce lab-on-chip devices in the nanofluidic regime, electron beam lithography (EBL) and focused ion beam etching are used in clean room facilities to prototype nanochannels or nanopores in the sub[100] nm range in silicon/silicon nitride[26]. EBL can achieve channel sizes smaller than 10 nm[27], but cannot pattern as fast as mask-based lithography approaches[28]. These approaches work well, but can be challenging to integrate with microfluidics and are costly and can require long writing times. We demonstrate an approach to produce nanofluidic chips at wafer-scale in a nonclean room environment using a hybrid lithography approach bringing together direct two photon writing for defining nanoscale structures with conventional whole-wafer mask ultraviolet (UV) lithography

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call