Abstract

A two-dimensional single-photon imaging system with high sensitivity and high time resolution is the ultimate camera and useful in a wide range of fields. A superconducting nanowire single-photon detector (SSPD or SNSPD) is one of the best candidates for realizing such an ultimate camera due to its high detection efficiency in a wide spectral range, low dark count rate without after-pulsing, and excellent time resolution. Here we propose a new readout scheme to realize a large-scale imaging array based on SSPD, where a row-column readout architecture is combined with a digital signal processor based on a single-flux-quantum (SFQ) circuit. A 16-pixel row-column readout SSPD array is fabricated and measured with an SFQ digital signal processor. We successfully acquired spatial information as encoded digital bit codes with the temporal information of the photon detection. The system timing jitter was measured as <80 ps for all 16 pixels even through the SFQ signal processor, indicating the potential for an imaging array with an extremely high time resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call