Abstract

This paper discusses processing techniques for an adaptive digital holographic video service in various reconstruction environments, and proposes two new scalable coding schemes. The proposed schemes are constructed according to the hologram generation or acquisition schemes: hologram-based resolution-scalable coding (HRS) and light source-based signal-to-noise ratio scalable coding (LSS). HRS is applied for holograms that are already acquired or generated, while LSS is applied to the light sources before generating digital holograms. In the LSS scheme, the light source information is lossless coded because it is too important to lose, while the HRS scheme adopts a lossy coding method. In an experiment, we provide eight stages of an HRS scheme whose data compression ratios range from 1:1 to 100:1 for each layered data. For LSS, four layers and 16 layers of scalable coding schemes are provided. We experimentally show that the proposed techniques make it possible to service a digital hologram video adaptively to the various displays with different resolutions, computation capabilities of the receiver side, or bandwidths of the network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call