Abstract

Nowadays, sweet and drinkable water shortage is a global issue which has attracted widespread attention. Desalination of seawater as the greatest source of water on our planet using solar energy as the most abundant and green energy source for producing fresh water can help us address this issue. Interfacial solar desalination is a state-of-the-art, sustainable, green, and energy-efficient method that has been studied lately. One of the key parameters for researching this method with reasonable efficiency is a photothermal material. Herein, carbon-coated sand was synthesized using abundant, green, and low-cost materials (sand and sugar), and its performance as a photothermal material is investigated and reported. In this work, a three-dimensional (3D) system is introduced to develop the performance and efficiency of the system under real sun irradiation and natural circumstances. The salt rejection ability of the system is another important thing we should notice due to the high salinity of seawater that we want to desalinate. The superhydrophilic carbonized sand demonstrated a good evaporation rate of 1.53 kg/m2h and 82% efficiency under 1 sun irradiation and upright salt rejection ability, which exhibited its capability to be used in green solar-driven water vaporization technology for sweet water production. The effects of important parameters, including light intensity, wind speed, and environment temperature, on the evaporation rate using carbonized sand as a solar collector in a solar desalination system were studied in both laboratory and real systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call