Abstract
Identifying critical nodes and links in graphs is a crucial task. These nodes/links typically represent critical elements/communication links that play a key role in a system’s performance. However, a majority of the methods available in the literature on the identification of critical nodes/links are based on an iterative approach that explores each node/link of a graph at a time, repeating for all nodes/links in the graph. Such methods suffer from high computational complexity and the resulting analysis is also network-specific. To overcome these challenges, this article proposes a scalable and generic graph neural network (GNN) based framework for identifying critical nodes/links in large complex networks. The proposed framework defines a GNN based model that learns the node/link criticality score on a small representative subset of nodes/links. An appropriately trained model can be employed to predict the scores of unseen nodes/links in large graphs and consequently identify the most critical ones. The scalability of the framework is demonstrated through prediction of nodes/links scores in large scale synthetic and real-world networks. The proposed approach is fairly accurate in approximating the criticality scores and offers a significant computational advantage over conventional approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.