Abstract

Graphene and other 2D materials have been extensively studied as solid lubricants in recent years. Low friction can sometimes be observed in those 2D lubricants, and one possible mechanism is that scroll-shaped nanostructures are formed during friction, which decreases the contact area and energy barrier, thus substantially reducing friction. The integration of graphene with metal or metal oxide nanostructures can further enhance its lubrication properties by increasing film formation ability and easy shearing of the nanosheets. However, it is not possible to reliably promote the formation of such nanoscroll-shaped low friction wear products, which limits the reproducibility and application of such nanostructures as solid lubricants. In this study, we address this issue by creating a scalable method for the synthesis of hybrid graphene-titanium oxide (G–TiO2) nanoscrolls and demonstrating their potential as solid lubricants with macroscopic coefficient of friction as low as 0.02 in ambient conditions. Our approach to generate the nanoscrolls is based on the in situ sol–gel synthesis of TiO2 on graphene followed by spray-freeze-drying–induced shape transformation. The solid lubrication performance of such G–TiO2 nanoscrolls can be further enhanced by applying a thin graphene oxide primer layer, which provides high affinity to both the substrate and the active materials. These hybrid nanoscrolls hold promising potential for applications in aerospace, automotive, and precision manufacturing fields as effective solid lubricants.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call