Abstract
This article is concerned with matching feature vectors in a one-to-one fashion across large collections of datasets. Formulating this task as a multidimensional assignment problem with decomposable costs (MDADC), we develop fast algorithms with time complexity roughly linear in the number n of datasets and space complexity a small fraction of the data size. These remarkable properties hinge on using the squared Euclidean distance as dissimilarity function, which can reduce matching problems between pairs of datasets to n problems and enable calculating assignment costs on the fly. To our knowledge, no other method applicable to the MDADC possesses these linear scaling and low-storage properties necessary to large-scale applications. In numerical experiments, the novel algorithms outperform competing methods and show excellent computational and optimization performances. An application of feature matching to a large neuroimaging database is presented. The algorithms of this article are implemented in the R package matchFeat available at github.com/ddegras/matchFeat. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.