Abstract
The requirement of energy efficiency demands materials with superior thermal insulation properties. Inorganic aerogels are excellent thermal insulators, but are difficult to produce on a large-scale, are mechanically brittle, and their structural properties depend strongly on their density. Here, we report the scalable generation of low-density, hierarchically porous, polypropylene foams using industrial-scale foam-processing equipment, with thermal conductivity lower than that of commercially available high-performance thermal insulators such as superinsulating Styrofoam. The reduction in thermal conductivity is attributed to the restriction of air flow caused by the porous nanostructure in the cell walls of the foam. In contrast to inorganic aerogels, the mechanical properties of the foams are less sensitive to density, suggesting efficient load transfer through the skeletal structure. The scalable fabrication of hierarchically porous polymer foams opens up new perspectives for the scalable design and development of novel superinsulating materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.