Abstract

Flexible surface enhanced Raman spectroscopy (SERS) nanosensors, constructed by integration of plasmonic nanostructures with polymeric substrates, have received increasing research interests for recent decades. When compared to abundant works on optimization of the plasmonic nanostructures, the research involving the influence of polymeric substrates on analytical performance of resultant flexible SESR nanosensors is unexpectedly limited. Herein, the ultra-thin silver layer has been deposited on the electrospun polyurethane (ePU) nanofibrous membranes via vacuum evaporation to prepare the flexible SRES nanosensors. Interestingly, we find that the molecular weight and polydispersion index of synthesized PU play important roles in regulating the fine morphology of electrospun nanofibers, which in turns determine the Raman enhancement of resultant flexible SERS nanosensors. Specifically, the optimized SERS nanosensor, obtained by evaporating 10 nm silver layer on top of nanofibers derived from electrospinning of PU with a weight-average molecular weight of 140,354 and polydispersion index of 1.26, enables label-free detection of the carcinogen of aflatoxin down to 0.1 nM. Thanks to its scalable fabrication and good sensitivity, the current work opens new way for design of cost-effective flexible SERS nanosensors for environmental monitoring and food security applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call