Abstract

Summary Cost modeling shows that high-throughput processing of perovskite solar cells is required not only to compete with incumbent technologies in terms of levelized cost of energy, but more importantly, it is the major enabling factor facilitating sustainable growth rates of solar cell manufacturing capacity commensurate with global climate targets. We performed rapid thermal annealing at blade-coating speed to quickly deposit and convert perovskite thin films for scalable manufacturing of perovskite solar cells. In situ X-ray diffraction during film deposition and thermal conversion gave insight into the formation of crystalline intermediates, essential for high-quality films. Parameters were optimized based on the in situ study, allowing perovskite films to be annealed within 3 s with a champion power conversion efficiency of 16.8%. This opens up a clear pathway toward industrial-scale high-throughput manufacturing, which is required to fulfill the projected photovoltaic installation rates needed to reach climate goals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.