Abstract

AbstractIn addition to high efficiencies, upscaling and long‐term operational stability are key pre‐requisites for moving perovskite solar cells toward commercial applications. In this work, a strategy to fabricate large‐area uniform and dense perovskite films with a thickness over one‐micrometer via a two‐step coating process by introducing NH4Cl as an additive in the PbI2 precursor solution is developed. Incorporation of NH4Cl induces the formation of the intermediate phases of x[NH4+]·[PbI2Clx]x− and HPbI3−xClx, which can effectively retard the crystallization rate of perovskite leading to uniform and compact full‐coverage perovskite layers across large areas with high crystallinity, large grain sizes, and small surface roughness. The 5 × 5 and 10 × 10 cm2 perovskite solar modules (PSMs) based on this method achieve a power conversion efficiency (PCE) of 14.55% and 10.25%, respectively. These PSMs also exhibit good operational stability with a T80 lifetime (the time during which the solar module PCE drops to 80% of its initial value) under continuous light illumination exceeding 1600 h (5 × 5 cm2) and 1100 h (10 × 10 cm2), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.